1-3 正弦定理、餘弦定理

【目標】
能理解三角形及其邊與角的定量關係，如：三角形的面積（含海龍公式）、正弦定理（含外接圓半徑）、餘弦定理，並熟練之，作為處理與三角形相關的問題及測量問題的基本工具。

【定理】
1. 三角形的面積公式
 在\(\Delta ABC\)中，以\(a, b, c\)分別表示\(\angle A, \angle B, \angle C\)的對邊長，\(\Delta\)表示\(\Delta ABC\)的面積，
 \[
 \Delta = \frac{1}{2} abc \sin C = \frac{1}{2} bcs \sin A = \frac{1}{2} cas \sin B.
 \]
 證明：
 (1) \(\angle C\)為銳角
 (2) \(\angle C\)為直角
 (3) \(\angle C\)為鈍角

2. 各種\(\Delta ABC\)的面積表示公式（高中階段會學到的求三角形的面積公式）：
 (1). 基礎公式：\(\frac{1}{2} \times \text{底} \times \text{高}\)。
 (2). 正弦表示公式：\(\frac{1}{2} ab \sin C = \frac{1}{2} bc \sin A = \frac{1}{2} ca \sin B\)。
 (3). 海龍公式：\(\sqrt{s(s-a)(s-b)(s-c)}\)，其中\(s = \frac{a + b + c}{2}\)為周長之半。
 (4). 外接圓半徑表示公式：\(\frac{abc}{4R}\)，其中\(R\)為外接圓半徑。
 (5). 內切圓半徑表示公式：\(rs\)，其中\(r\)為內切圓半徑。
 (6). 內積表示公式：\(\frac{1}{2} \sqrt{|\overrightarrow{AB}|^2 \times |\overrightarrow{AC}|^2 - (\overrightarrow{AB} \cdot \overrightarrow{AC})^2}\)。
 (7). 外積表示公式：\(\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|\)。
 (8). 行列式表示公式：\(\frac{1}{2} |\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}|\)。
 (9). 行列式速算法表示公式：\(\frac{1}{2} |\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{vmatrix}|\)。
【定理】
正弦定理：

设 a,b,c 分别表示 $\triangle ABC$ 中 $\angle A, \angle B, \angle C$ 的对边长，即 $a \sin A = b \sin B = c \sin C = 2R$，
其中 R 表示 $\triangle ABC$ 的外接圆的半径。

证明：

(1) $\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$

$$\Rightarrow \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

(2) 再证明等於 $2R$ 部分。

(a) $\angle A$ 为锐角

(b) $\angle A$ 为直角

(c) $\angle A$ 为钝角

正弦定理表明三角形中三组边长与对角正弦的比值相同。

这个比值有沒有特別意義呢？

由於 $\triangle ABC$ 中至少有一個銳角，不妨假设 $\angle A$ 是銳角。

作 $\triangle ABC$ 外接圆的直径 BA' 及弦 AC'，則 $AC' \perp BC$，如图所示。

$\triangle A'BC$ 就是直角三角形，其中 $\angle A'CB$ 是直角。

由於 $\angle A'$ 與 $\angle A$ 對同一個弧 BC，故 $\angle A' = \angle A$。

此时，AB 是外接圆的直径。

若设外接圆半径为 R，則 $\frac{a}{\sin A} = \frac{a}{\sin A'} = \frac{a}{2R}$。

因此，在 $\triangle ABC$ 中，$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$。

結論：在任意三角形中，邊長與其對角正弦的比值恰為此三角形外接圆的直径。
註：
1. 正弦定理即邊長比等於對角的正弦比。
 \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]
2. 正弦定理可說是三角形大邊對大角的性質。
 (注意：\(a \neq b \neq c\))
3. 至少\(\frac{a}{\sin A}, \frac{b}{\sin B}, \frac{c}{\sin C}\)等三個比值至少要有一個能夠求得出來，才能使用正
 弦定理。

【問題】
1. 在\(\Delta ABC\)中的三個角度\(\angle A, \angle B, \angle C\)與三個邊長\(a, b, c\)共計六個條件中，給定哪
 幾個條件後可以利用正弦定理決定三角形？
2. 設\(\Delta ABC\)的三邊長為\(a, b, c\)，面積為\(\Delta\)，外接圓半徑為\(R\)。
 試證：\(R = \frac{abc}{4\Delta}\)。
【定理】
餘弦定理：
設 a, b, c 分別表示 $\triangle ABC$ 中 $\angle A, \angle B, \angle C$ 的對邊長，則
$$a^2 = b^2 + c^2 - 2bc \cos A, b^2 = c^2 + a^2 - 2ca \cos B, c^2 = a^2 + b^2 - 2ab \cos C.$$

證明：
(1) $\angle A$ 為銳角
(2) $\angle A$ 為直角
(3) $\angle A$ 為鈍角

上述三種情形皆滿足下式
$$a^2 = BC^2 = (c - b \cos A)^2 + (0 - b \sin A)^2 = c^2 + b^2 \cos^2 A - 2bc \cos A + b^2 \sin^2 A$$
同理可證其餘兩式。

【討論】
使用時機：
1. 知道任兩邊及一角，就可以使用餘弦定理求第三邊。
2. 知道三邊，就可以使用餘弦定理求各內角的餘弦，
有了餘弦值就可以進一步決定該內角的角度。
3. 當三角形的三邊長給定時，此三角形便確定，
利用餘弦定理便可求得其任一中線長。
【定理】
1. 四邊形面積：
若給定四邊形ABCD（凹四邊形或凸四邊形都可），
則四邊形面積為$$\frac{1}{2} \overline{AC} \cdot \overline{BD} \sin \theta$$，其中$$\theta$$為四邊形兩對角線夾角之一。

證明：
設兩對角線交點為P，
四邊形面積為$$\Delta PAB + \Delta PBC + \Delta PCD + \Delta PDA$$
$$= \frac{1}{2} \overline{PA} \cdot \overline{PB} \sin \theta + \frac{1}{2} \overline{PB} \cdot \overline{PC} \sin(180^\circ - \theta)$$
$$+ \frac{1}{2} \overline{PC} \cdot \overline{PD} \sin \theta + \frac{1}{2} \overline{PD} \cdot \overline{PA} \sin(180^\circ - \theta)$$
$$= \frac{1}{2} \sin \theta \cdot (\overline{PA} \cdot \overline{PB} + \overline{PB} \cdot \overline{PC} + \overline{PC} \cdot \overline{PD} + \overline{PD} \cdot \overline{PA})$$
$$= \frac{1}{2} \sin \theta \cdot [\overline{PB} \cdot (\overline{PA} + \overline{PC}) + \overline{PD} \cdot (\overline{PC} + \overline{PA})]$$
$$= \frac{1}{2} \sin \theta \cdot (\overline{PB} + \overline{PD}) \cdot (\overline{PA} + \overline{PC}) = \frac{1}{2} \overline{AC} \cdot \overline{BD} \sin \theta$$。

2. 內角平分線長：
設$$\Delta ABC$$中$$\angle A, \angle B, \angle C$$的對邊長分別為$$a, b, c$$，
則內角平分線長為$$\frac{bc \cdot \sin A}{(b + c) \cdot \sin \frac{A}{2}} = \frac{2bc \cdot \cos \frac{A}{2}}{b + c}$$。

證明：
由$$\frac{1}{2} bc \cdot \sin A = \frac{1}{2} b \cdot \overline{AD} \cdot \sin \frac{A}{2} + \frac{1}{2} c \cdot \overline{AD} \cdot \sin \frac{A}{2}$$，
得$$\overline{AD} = \frac{bc \cdot \sin A}{(b + c) \cdot \sin \frac{A}{2}} = \frac{2bc \cdot \cos \frac{A}{2}}{b + c}$$。
3. 投影定理：
在ΔABC 中，以a, b, c 分別表示∠A, ∠B, ∠C 的對邊長，則
\[
\begin{align*}
 a &= b \cos C + c \cos B \\
 b &= c \cos A + a \cos C \\
 c &= a \cos B + b \cos A
\end{align*}
\]
（證法一）：
\[
 b \cos C + c \cos B = b \cdot \frac{a^2 + b^2 - c^2}{2ab} + c \cdot \frac{a^2 + c^2 - b^2}{2ac} = a.
\]
（證法二）：
（1）∠A 為銳角
（2）∠A 為直角
（3）∠A 為鈍角

4. 海龍(Heron)公式：
ΔABC 的面積為 \[s(s-a)(s-b)(s-c) \]，其中 \[s = \frac{a+b+c}{2} \] 為周長之半。

証：
海龍（Heron of Alexandria，約公元 100 年，古希臘數學家）
四邊形 ABCD 的面積為 \[s(s-a)(s-b)(s-c)(s-d) \]，
其中 \[s = \frac{a+b+c+d}{2} \]。

証明：
\[
\begin{align*}
 \Delta ABC &= \frac{1}{2} ab \cdot \sin C = \frac{1}{2} ab \cdot \sqrt{1 - \cos^2 C} = \frac{1}{2} ab \cdot \sqrt{1 - \left(\frac{a^2 + b^2 - c^2}{2ab}\right)^2} \\
 &= \frac{1}{2} ab \cdot \sqrt{1 + \left(\frac{a^2 + b^2 - c^2}{2ab}\right) \cdot \left(1 - \frac{a^2 + b^2 - c^2}{2ab}\right)} \\
 &= \frac{1}{2} ab \cdot \sqrt{\left[\left(\frac{a^2 + 2ab + b^2 - c^2}{2ab}\right) \cdot \left(\frac{c^2 - (a^2 - 2ab + b^2)}{2ab}\right)\right]} \\
 &= \frac{1}{2} ab \cdot \sqrt{\left[\frac{(a+b)^2 - c^2} {16}\right] \cdot \left[c^2 - (a-b)^2\right]} \\
 &= \frac{(a+b+c) \cdot (a+b-c) \cdot (c+a-b) \cdot (c-a+b)}{2} = \sqrt{s(s-a)(s-b)(s-c)}.
\end{align*}
\]
5. 中線長：
在ΔABC 中，以a,b,c分別表示∠A,∠B,∠C的對邊長，

則三角形A至BC邊的中點D連線所得的中線長AD = \sqrt{2b^2 + 2c^2 - a^2}。

證明：
\[
\begin{align*}
\cos \angle ADB &= \frac{\overrightarrow{AD}^2 + \overrightarrow{BD}^2 - c^2}{2\overrightarrow{AD} \cdot \overrightarrow{BD}}, \\
\cos \angle ADC &= \frac{\overrightarrow{AD}^2 + \overrightarrow{CD}^2 - b^2}{2\overrightarrow{AD} \cdot \overrightarrow{CD}}.
\end{align*}
\]
又∠ADB + ∠ADC = 180°，
即 \(\frac{\overrightarrow{AD}^2 + \overrightarrow{BD}^2 - c^2}{2\overrightarrow{AD} \cdot \overrightarrow{BD}} = -\frac{\overrightarrow{AD}^2 + \overrightarrow{CD}^2 - b^2}{2\overrightarrow{AD} \cdot \overrightarrow{CD}} \),
可得 \(AD = \frac{\sqrt{2b^2 + 2c^2 - a^2}}{2} \)。

6. 平行四邊形定理：
平行四邊形中兩對角線平方和等於四邊平方和。
即若ABCD為平行四邊形，則 \(AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2 \)。

證明：
\[
\begin{align*}
\cos \angle ABC &= \frac{\overrightarrow{AB}^2 + \overrightarrow{BC}^2 - \overrightarrow{AC}^2}{2\overrightarrow{AB} \cdot \overrightarrow{BC}}, \\
\cos \angle BAD &= \frac{\overrightarrow{AB}^2 + \overrightarrow{AD}^2 - \overrightarrow{BD}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}}.
\end{align*}
\]
又∠ABC + ∠BAD = 180°，
\[
\frac{\overrightarrow{AB}^2 + \overrightarrow{BC}^2 - \overrightarrow{AC}^2}{2\overrightarrow{AB} \cdot \overrightarrow{BC}} + \frac{\overrightarrow{AB}^2 + \overrightarrow{AD}^2 - \overrightarrow{BD}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}} = 0
\]
\[
\frac{\overrightarrow{AB}^2 + \overrightarrow{BC}^2 - \overrightarrow{AC}^2 + \overrightarrow{AB}^2 + \overrightarrow{AD}^2 - \overrightarrow{BD}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}} = 0
\]
\[
\frac{\overrightarrow{AB}^2 + \overrightarrow{AD}^2 - \overrightarrow{BD}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}} = 0
\]
\[
\frac{\overrightarrow{AB}^2 + \overrightarrow{AD}^2 - \overrightarrow{BD}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}} = 0
\]
\[
\frac{\overrightarrow{AD}^2 + \overrightarrow{BC}^2}{2\overrightarrow{AB} \cdot \overrightarrow{AD}} = 0
\]
\[
\overrightarrow{AC}^2 + \overrightarrow{BD}^2 = \overrightarrow{AB}^2 + \overrightarrow{BC}^2 + \overrightarrow{CD}^2 + \overrightarrow{DA}^2.
\]
7. 圓內接四邊形之對角線長

設四邊形 $ABCD$ 內接於一圓且 $\overline{AB} = a, \overline{BC} = b, \overline{CD} = c, \overline{DA} = d$，求對角線長。

證明：

由餘弦定理知

$$\begin{align*}
\cos \angle BAD &= \frac{a^2 + d^2 - BD^2}{2ad} \\
\cos \angle BCD &= \frac{b^2 + c^2 - BD^2}{2bc}
\end{align*}$$

$$\Rightarrow \frac{a^2 + d^2 - BD^2}{2ad} + \frac{b^2 + c^2 - BD^2}{2bc} = 0$$

可求出 BD，
同理可求出 AC。
【問題】
1. 一個三角形為直角三角形、銳角三角形、鈍角三角形的條件分別為何？
 討論：
 (1) \(\angle A \) 為銳角 \(\iff \cos A > 0 \iff \cos A = \frac{b^2 + c^2 - a^2}{2bc} > 0 \iff b^2 + c^2 > a^2 \)。
 (2) \(\angle A \) 為直角 \(\iff \cos A = 0 \iff \cos A = \frac{b^2 + c^2 - a^2}{2bc} = 0 \iff b^2 + c^2 = a^2 \)。
 (3) \(\angle A \) 為鈍角 \(\iff \cos A < 0 \iff \cos A = \frac{b^2 + c^2 - a^2}{2bc} < 0 \iff b^2 + c^2 < a^2 \)。
2. 若給定 \(b, c, \angle B \)，可否作出三角形？
 討論：
 (1) 若 \(\angle B \) 為銳角，則
 (a) \(b < c \sin B \) \(\implies \) 無解。
 (b) \(b = c \sin B \) \(\implies \) 恰一解。
 (c) \(c \sin B < b < c \) \(\implies \) 兩解。
 (d) \(c \leq b \) \(\implies \) 恰一解。
 (2) 若 \(\angle B \) 為鈍角或直角，則
 (a) \(b \leq c \) \(\implies \) 無解。
 (b) \(b > c \) \(\implies \) 恰一解。