3-4 指數與對數—對數函數
【目標】
能認識對數函數，並理解同底的對數函數圖形與指數函數圖形對直線 \(y = x \) 對稱，透過指數函數的圖形了解對數函數圖形的凹凸性，進而能解簡易的對數方程式與不等式。
【定義】
1. 對數函數
設正實數 \(a \neq 1 \)，函數 \(f(x) = \log_a x \) 稱為以 \(a \) 為底的對數函數，其中 \(x \) 可取任意正實數，此函數的圖形是坐標平面上所有點 \((x, \log_a x)\) 所形成。
【性質】
對數函數 \(y = \log_a x, a > 0, a \neq 1, x > 0 \) 圖形的特性：
1. 正實數 \(a > 1 \) 時，以 \(a \) 為底的對數函數 \(y = \log_a x \) 與以 \(a \) 為底的指數函數 \(y = a^x \)，兩者的圖形對稱於直線 \(y = x \)。
 註：
 這是因為 \(y = \log_a x \iff x = a^y \)。對摺翻印時，\(x \) 與 \(y \) 的角色會互換。所以 \(x = 2^y \) 就變成 \(y = 2^x \)。事實上，如果將以 2 為底的指數函數 \(y = 2^x \) 與以 2 為底的對數函數 \(y = \log_2 x \)，兩函數圖形在同一坐標平面上，則兩者對稱於直線 \(y = x \)。
2. \(y = \log_a x \) 圖形的性質：
 （1）曲線完全在 \(y \) 軸右方，即真數 \(x \) 恒正，且過定點 \((1,0)\)。
 （2）當 \(a > 1 \) 時，曲線為由左到右上升的曲線；
 當 \(0 < a < 1 \) 時，曲線為由左到右下降的曲線。
 （3）曲線往上、往下都沒有界限，且以 \(y \) 軸為漸近直線。
 （4）當 \(a > 1 \) 時，曲線凹口向下；
 當 \(0 < a < 1 \) 時，曲線凹口向上。
3. \(a > 1 \) 時，\(y = \log_a x \) 的圖形可由 \(y = \log_2 x \) 的圖形以 \(x \) 軸為基準，先沿 \(x \) 軸作鏡像，再沿 \(y \) 軸作鏡像而得。
4. 設正實數 \(a \neq 1 \)，則以 \(a \) 為底的對數 \(y = \log_a x \) 與以 \(\frac{1}{a} \) 為底的對數函數 \(y = \log_{\frac{1}{a}} x \)，兩者的圖形對稱於 \(x \) 軸。
5. (對數律) 對於任意實數 \(x, y \)，恆有

 (1) \(f(xy) = f(x) + f(y) \)。

 (2) \(f(\frac{x}{y}) = f(x) - f(y) \)。

6. 遞增、遞減:

 設正實數 \(a \neq 1 \)，對數函數 \(f(x) = \log_a x \)。

 (1) \(a > 1 \) 時，\(y = f(x) \) 是嚴格遞增函數

 （即 \(a > 1 : x_1 < x_2 \Leftrightarrow \log_a x_1 < \log_a x_2 \)）。

 (2) \(0 < a < 1 \) 時，\(y = f(x) \) 是嚴格遞減函數

 （即 \(0 < a < 1 : x_1 < x_2 \Leftrightarrow \log_a x_1 > \log_a x_2 \)）。

7. 一對一函數:

 平行於 \(x \) 軸的每一條直線都至多與 \(y = \log_a x \) 的圖形交於一點。

8. 當 \(a > 1 \) 時，圖形由左往右上升，且底數 \(a \) 越大，上升的速度越慢，當 \(x \to 0 \) 時，圖形趨近 \(y \) 軸，稱 \(y \) 軸是 \(y = \log_a x \) 圖形的漸近線。

 即當 \(a > 1 \) 時，若 \(x_1 > x_2 \)，則 \(\log_a x_1 > \log_a x_2 \)

 \(\Leftrightarrow f(x) = \log_a x \) 為遞增函數 \(\Leftrightarrow f(x) = \log_a x \) 的圖形向右上升

 當 \(0 < a < 1 \) 時，圖形由左往右下降，且底數 \(a \) 越小，下降的速度越慢，當 \(x \to 0 \) 時，圖形趨近 \(y \) 軸，稱 \(y \) 軸是 \(y = \log_a x \) 圖形的漸近線。

 即當 \(0 < a < 1 \) 時，若 \(x_1 > x_2 \)，則 \(\log_a x_1 < \log_a x_2 \)

 \(\Leftrightarrow f(x) = \log_a x \) 為遞減函數 \(\Leftrightarrow f(x) = \log_a x \) 的圖形向右下降

10. 對數函數圖形的凹凸性:

 (1) 當 \(a > 1 \) 時，\(f(x) = \log_a x \) 的圖形為凹向下，

 即圖形上任兩點 \(A, B \) 的連線段在 \(A, B \) 兩點間 \(f(x) = \log_a x \) 的圖形下方，

 因此 \(\frac{1}{2} (\log_a x_1 + \log_a x_2) \leq \log_a \frac{x_1 + x_2}{2} \)，其中 \(x_1, x_2 \) 為任意的正實數。

 (利用 \(\frac{x_1 + x_2}{2} \geq \sqrt{x_1 x_2} \)，再兩邊取對數即得證)

 (2) 當 \(0 < a < 1 \) 時，\(f(x) = \log_a x \) 的圖形為凹向上，

 即圖形上任兩點 \(A, B \) 的連線段在 \(A, B \) 兩點間 \(f(x) = \log_a x \) 的圖形上方，

 因此 \(\frac{1}{2} (\log_a x_1 + \log_a x_2) \geq \log_a \frac{x_1 + x_2}{2} \)，其中 \(x_1, x_2 \) 為任意的正實數。

 (利用 \(\frac{x_1 + x_2}{2} \geq \sqrt{x_1 x_2} \)，再兩邊取對數即得證)
【討論】
1. 試利用 $y = \log_2 x$ 的圖形作出 $y = 2 \log_2 x$ 的圖形。
 解答：
 設點 $P(x_0, y_0)$ 在 $y = \log_2 x$ 的圖形上，
 則 $y_0 = \log_2 x_0$，於是 $2y_0 = 2 \log_2 x_0$，
 故點 $Q(x_0, 2y_0)$ 在 $y = 2 \log_2 x$ 的圖形上。
 所以將 $y = \log_2 x$ 的圖形以 x 軸為基準伸縮2倍，
 使得 $y = 2 \log_2 x$ 的圖形。

2. 可知將以 2 為底的對數函數 $y = \log_2 x$ 的圖形以 x 軸為基準適當伸縮，就可以
 分別得到以 $\sqrt{2}$ 為底或以 4 為底的對數函數圖形。事實上，對任意實數 $a > 1$，
 只要令正實數 $k = \frac{1}{\log_2 a}$，則由換底公式知 $\log_a x = \frac{\log_2 x}{\log_2 a} = k \log_2 x$，故以 a 為
 底的對數函數 $y = \log_a x$ 的圖形都可以用 $y = \log_2 x$ 的圖形以 x 軸為基準伸縮 k
 倍得到。當然，要用 $y = \log_{10} x$ 的圖形伸縮也是可以的。

【定義】
1. 點對稱：
 給與平面上兩點 P, Q，如果直線 L 是直線 \overline{PQ} 的垂直平分線時，
 稱 P 與 Q 對稱於 L，Q 稱為 P 對於 L 的對稱點。

2. 圖形對稱：
 給與平面上兩圖形 G, G'，直線 L 是同一平面上的一條直線，如果
 （1）G 上的每一點 P 對於 L 的對稱點 P' 都在圖形 G' 上。
 （2）G' 上的每一點 P' 對於 L 的對稱點 P 都在圖形 G 上。
 那麼就稱圖形 G 與 G' 對稱於直線 L，G 與 G' 稱為對於 L 互相對稱的圖形，
 L 稱為圖形 G 與 G' 的對稱軸。
 註：
 以上兩條件皆須成立，才稱圖形對稱。

【問題】
1. 函數 $y = 2^x$ 的圖形與函數 $y = \left(\frac{1}{2}\right)^x$ 的圖形對稱於那一條直線？
2. 函數 $y = 2^x$ 的圖形與函數 $y = 2^{-x}$ 的圖形對稱於那一條直線？
3. 函數 $y = \log_2 x$ 的圖形與函數 $y = \log_1 x$ 的圖形對稱於那一條直線？
4. 函數 $y = \log_2 x$ 的圖形與函數 $y = -\log_2 x$ 的圖形對稱於那一條直線？
【問題】
1. 試畫出 $y = \log_2 x$ 的圖形。
2. 試畫出 $y = \log_3 x$ 的圖形。
3. 試畫出 $y = \log_\frac{1}{2} x$ 的圖形。
4. 試畫出 $y = \log_\frac{1}{3} x$ 的圖形。

5. 觀察上述幾個圖形中，哪幾個為互相對稱的圖形？
注：
底數互為倒數的兩對數函數，其圖形對稱於 x 軸。
【問題】
試利用平移、旋轉、伸縮、對稱等幾何方法畫出下列圖形：
1. 試畫出 \(y = \log x \) 的圖形。
2. 試畫出 \(y = \log(-x) \) 的圖形。
3. 試畫出 \(y = -\log x \) 的圖形。
4. 試畫出 \(y = -\log(-x) \) 的圖形。
5. 試畫出 \(y = (\log x) + 1 \) 的圖形。
6. 試畫出 \(y = \log(x + 1) \) 的圖形。
7. 試畫出 \(y = \log|x| \) 的圖形。
8. 試畫出 \(y = -\log|x| \) 的圖形。
9. 試畫出 \(y = |\log x| \) 的圖形。
10. 試畫出 \(y = |\log(-x)| \) 的圖形。
11. 試畫出 \(y = \log(x^2) \) 的圖形。（註：\(y = \log(x^2) = 2\log|x| \)）
12. 試畫出 \(y = \log(2x) \) 的圖形。
【方法】
1. 對數形式的問題中，比較大小的常用方法有如下幾種：
 (1) 化成同底數。
 (2) 化成同真數。
 (3) 與0,1比較大小。
 (4) 兩兩相比。
 (5) 取指數。
【性質】
對數比較大小時所使用的性質：
1. 當$a > 1$ (嚴格遞增)：
 (1) $x > 1 \Rightarrow \log_a x > 0$。
 (2) $x < 1 \Rightarrow \log_a x < 0$。
2. 當$0 < a < 1$ (嚴格遞減)：
 (1) $x > 1 \Rightarrow \log_a x < 0$。
 (2) $x < 1 \Rightarrow \log_a x > 0$。
【比較】
同底的指數函數$f(x) = a^x$的圖形與對數函數$g(x) = \log_a x$的圖形比較如下：
1. $f(x) = a^x$ 與 $g(x) = \log_a x$ 的圖形對稱於直線$L: y = x$。
 證明：
 點$P(r, s)$在$y = a^x$的圖形上
 $\Leftrightarrow s = a^r$
 $\Leftrightarrow r = \log_a s$
 \Leftrightarrow 點$Q(s, r)$在$y = \log_a x$的圖形上
 而點$P(r, s)$與$Q(s, r)$對稱於直線$y = x$，
 因此$y = a^x$的圖形與$y = \log_a x$的圖形對稱於直線$L: y = x$。
2. 圖形都為連續，兩者對稱於直線$y = x$，
 且$y = a^x$圖形恆過點$(0,1)$，$y = \log_a x$圖形恆過點$(1,0)$。
3. (1) 當$a > 1$時，都是嚴格遞增，
 也就是若$x_1 > x_2$時，則$a^{x_1} > a^{x_2}$；若$x_1 > x_2 > 0$時，則$\log_a x_1 > \log_a x_2$。
 (2) 當$0 < a < 1$時，都是嚴格遞減，
 也就是若$x_1 > x_2$時，則$a^{x_1} < a^{x_2}$；若$x_1 > x_2 > 0$時，則$\log_a x_1 < \log_a x_2$。

24